Files
i2p.android.base/router/doc/udp.html
jrandom 65975df1be 2006-02-19 jrandom
* Moved the current net's reseed URL to a different location than where
      the old net looks (dev.i2p.net/i2pdb2/ vs .../i2pdb/)
    * More aggressively expire inbound messages (on receive, not just on send)
    * Add in a hook for breaking backwards compatibility in the SSU wire
      protocol directly by including a version as part of the handshake.  The
      version is currently set to 0, however, so the wire protocol from this
      build is compatible with all earlier SSU implementations.
    * Increased the number of complete message readers, cutting down
      substantially on the delay processing inbound messages.
    * Delete the message history file on startup
    * Reworked the restart/shutdown display on the console (thanks bd_!)
2006-02-19 12:29:57 +00:00

760 lines
32 KiB
HTML

<code>$Id: udp.html,v 1.19 2006/02/15 00:33:32 jrandom Exp $</code>
<h1>Secure Semireliable UDP (SSU)</h1>
<b>DRAFT</b>
<p>
The goal of this protocol is to provide secure, authenticated,
semireliable, and unordered message delivery, exposing only a minimal
amount of data easily discernible to third parties. It should
support high degree communication as well as TCP-friendly congestion
control, and may include PMTU detection. It should be capable of
efficiently moving bulk data at rates sufficient for home users.
In addition, it should support techniques for addressing network
obstacles, like most NATs or firewalls.</p>
<h2><a name="addressing">Addressing and introduction</a></h2>
<p>To contact an SSU peer, one of two sets of information is necessary:
a direct address, for when the peer is publicly reachable, or an
indirect address, for using a third party to introduce the peer.
There is no restriction on the number of addresses a peer may have.</p>
<pre>
Direct: ssu://host:port/introKey[?opts=[A-Z]*]
Indirect: ssu://tag@relayhost:port/relayIntroKey/targetIntroKey[?opts=[A-Z]*]
</pre>
<p>These introduction keys are delivered through an external channel
and must be used when establishing a session key. For the indirect
address, the peer must first contact the relayhost and ask them for
an introduction to the peer known at that relayhost under the given
tag. If possible, the relayhost sends a message to the addressed
peer telling them to contact the requesting peer, and also gives
the requesting peer the IP and port on which the addressed peer is
located. In addition, the peer establishing the connection must
already know the public keys of the peer they are connecting to (but
not necessary to any intermediary relay peer).</p>
<p>Each of the addresses may also expose a series of options - special
capabilities of that particular peer. For a list of available
capabilities, see <a href="#capabilities">below</a>.</p>
<h2><a name="header">Header</a></h2>
<p>All UDP datagrams begin with a MAC and an IV, followed by a variable
size payload encrypted with the appropriate key. The MAC used is
HMAC-MD5, truncated to 16 bytes, while the key is a full AES256
key. The specific construct of the MAC is the first 16 bytes from:</p>
<pre>
HMAC-MD5(payload || IV || (payloadLength ^ protocolVersion), macKey)
</pre>
<p>The payload itself is AES256/CBC encrypted with the IV and the
sessionKey, with replay prevention addressed within its body,
explained below. The payloadLength in the MAC is a 2 byte unsigned
integer in 2s complement.</p>
<p>The protocolVersion is a 2 byte unsigned integer in 2s complement,
and currently set to 0. Peers using a different protocol version will
not be able to communicate with this peer, though earlier versions not
using this flag are.</p>
<h2><a name="payload">Payload</a></h2>
<p>Within the AES encrypted payload, there is a minimal common structure
to the various messages - a one byte flag and a four byte sending
timestamp (*seconds* since the unix epoch). The flag byte contains
the following bitfields:</p>
<pre>
bits 0-3: payload type
bit 4: rekey?
bit 5: extended options included
bits 6-7: reserved
</pre>
<p>If the rekey flag is set, 64 bytes of keying material follow the
timestamp. If the extended options flag is set, a one byte option
size value is appended to, followed by that many extended option
bytes, which are currently uninterpreted.</p>
<p>When rekeying, the first 32 bytes of the keying material is fed
into a SHA256 to produce the new MAC key, and the next 32 bytes are
fed into a SHA256 to produce the new session key, though the keys are
not immediately used. The other side should also reply with the
rekey flag set and that same keying material. Once both sides have
sent and received those values, the new keys should be used and the
previous keys discarded. It may be useful to keep the old keys
around briefly, to address packet loss and reordering.</p>
<pre>
Header: 37+ bytes
+----+----+----+----+----+----+----+----+
| MAC |
| |
+----+----+----+----+----+----+----+----+
| IV |
| |
+----+----+----+----+----+----+----+----+
|flag| time | (optionally |
+----+----+----+----+----+ |
| this may have 64 byte keying material |
| and/or a one+N byte extended options) |
+---------------------------------------|
</pre>
<h2><a name="messages">Messages</a></h2>
<h3><a name="sessionRequest">SessionRequest (type 0)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td>Alice to Bob</td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>256 byte X, to begin the DH agreement</li>
<li>1 byte IP address size</li>
<li>that many byte representation of Bob's IP address</li>
<li>N bytes, currently uninterpreted (later, for challenges)</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>introKey</td></tr>
</table>
<pre>
+----+----+----+----+----+----+----+----+
| X, as calculated from DH |
| |
. . .
| |
+----+----+----+----+----+----+----+----+
|size| that many byte IP address (4-16) |
+----+----+----+----+----+----+----+----+
| arbitrary amount |
| of uninterpreted data |
. . .
| |
+----+----+----+----+----+----+----+----+
</pre>
<h3><a name="sessionCreated">SessionCreated (type 1)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td>Bob to Alice</td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>256 byte Y, to complete the DH agreement</li>
<li>1 byte IP address size</li>
<li>that many byte representation of Alice's IP address</li>
<li>2 byte port number (unsigned, big endian 2s complement)</li>
<li>4 byte relay tag which Alice can publish (else 0x0)</li>
<li>4 byte timestamp (seconds from the epoch) for use in the DSA
signature</li>
<li>40 byte DSA signature of the critical exchanged data
(X + Y + Alice's IP + Alice's port + Bob's IP + Bob's port + Alice's
new relay tag + Bob's signed on time), encrypted with another
layer of encryption using the negotiated sessionKey. The IV
is reused here.</li>
<li>8 bytes padding, encrypted with an additional layer of encryption
using the negotiated session key as part of the DSA block</li>
<li>N bytes, currently uninterpreted (later, for challenges)</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>introKey, with an additional layer of encryption over the 40 byte
signature and the following 8 bytes padding.</td></tr>
</table>
<pre>
+----+----+----+----+----+----+----+----+
| Y, as calculated from DH |
| |
. . .
| |
+----+----+----+----+----+----+----+----+
|size| that many byte IP address (4-16) |
+----+----+----+----+----+----+----+----+
| Port (A)| public relay tag | signed
+----+----+----+----+----+----+----+----+
on time | |
+----+----+ |
| DSA signature |
| |
| |
| |
| +----+----+----+----+----+----+
| | (8 bytes of padding)
+----+----+----+----+----+----+----+----+
| |
+----+----+ |
| arbitrary amount |
| of uninterpreted data |
. . .
| |
+----+----+----+----+----+----+----+----+
</pre>
<h3><a name="sessionConfirmed">SessionConfirmed (type 2)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td>Alice to Bob</td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>1 byte identity fragment info:<pre>
bits 0-3: current identity fragment #
bits 4-7: total identity fragments</pre></li>
<li>2 byte size of the current identity fragment</li>
<li>that many byte fragment of Alice's identity.</li>
<li>on the last identity fragment, the signed on time is
included after the identity fragment, and the last 40
bytes contain the DSA signature of the critical exchanged
data (X + Y + Alice's IP + Alice's port + Bob's IP + Bob's port
+ Alice's new relay key + Alice's signed on time)</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>sessionKey</td></tr>
</table>
<pre>
<b>Fragment 1 through N-1</b>
+----+----+----+----+----+----+----+----+
|info| cursize | |
+----+----+----+ |
| fragment of Alice's full |
| identity keys |
. . .
| |
+----+----+----+----+----+----+----+----+
<b>Fragment N:</b>
+----+----+----+----+----+----+----+----+
|info| cursize | |
+----+----+----+ |
| fragment of Alice's full |
| identity keys |
. . .
| |
+----+----+----+----+----+----+----+----+
| signed on time | |
+----+----+----+----+ |
| arbitrary amount of uninterpreted |
| data, up from the end of the |
| identity key to 40 bytes prior to |
| end of the current packet |
+----+----+----+----+----+----+----+----+
| DSA signature |
| |
| |
| |
| |
+----+----+----+----+----+----+----+----+
</pre>
<h3><a name="relayRequest">RelayRequest (type 3)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td>Alice to Bob</td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>4 byte relay tag</li>
<li>1 byte IP address size</li>
<li>that many byte representation of Alice's IP address</li>
<li>2 byte port number (of Alice)</li>
<li>1 byte challenge size</li>
<li>that many bytes to be relayed to Charlie in the intro</li>
<li>Alice's intro key (so Bob can reply with Charlie's info)</li>
<li>4 byte nonce of alice's relay request</li>
<li>N bytes, currently uninterpreted</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>introKey (or sessionKey, if Alice/Bob is established)</td></tr>
</table>
<pre>
+----+----+----+----+----+----+----+----+
| relay tag |size| that many |
+----+----+----+----+----+ +----|
| bytes for Alice's IP address |port
+----+----+----+----+----+----+----+----+
(A) |size| that many challenge bytes |
+----+----+ |
| to be delivered to Charlie |
+----+----+----+----+----+----+----+----+
| Alice's intro key |
| |
| |
| |
+----+----+----+----+----+----+----+----+
| nonce | |
+----+----+----+----+ |
| arbitrary amount of uninterpreted data|
+----+----+----+----+----+----+----+----+
</pre>
<h3><a name="relayResponse">RelayResponse (type 4)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td>Bob to Alice</td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>1 byte IP address size</li>
<li>that many byte representation of Charlie's IP address</li>
<li>2 byte port number</li>
<li>1 byte IP address size</li>
<li>that many byte representation of Alice's IP address</li>
<li>2 byte port number</li>
<li>4 byte nonce sent by Alice</li>
<li>N bytes, currently uninterpreted</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>introKey (or sessionKey, if Alice/Bob is established)</td></tr>
</table>
<pre>
+----+----+----+----+----+----+----+----+
|size| that many bytes making up |
+----+ +----+----+
| Charlie's IP address | Port (C)|
+----+----+----+----+----+----+----+----+
|size| that many bytes making up |
+----+ +----+----+
| Alice's IP address | Port (A)|
+----+----+----+----+----+----+----+----+
| nonce | |
+----+----+----+----+ |
| arbitrary amount of uninterpreted data|
+----+----+----+----+----+----+----+----+
</pre>
<h3><a name="relayIntro">RelayIntro (type 5)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td>Bob to Charlie</td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>1 byte IP address size</li>
<li>that many byte representation of Alice's IP address</li>
<li>2 byte port number (of Alice)</li>
<li>1 byte challenge size</li>
<li>that many bytes relayed from Alice</li>
<li>N bytes, currently uninterpreted</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>sessionKey</td></tr>
</table>
<pre>
+----+----+----+----+----+----+----+----+
|size| that many bytes making up |
+----+ +----+----+
| Alice's IP address | Port (A)|
+----+----+----+----+----+----+----+----+
|size| that many bytes of challenge |
+----+ |
| data relayed from Alice |
+----+----+----+----+----+----+----+----+
| arbitrary amount of uninterpreted data|
+----+----+----+----+----+----+----+----+
</pre>
<h3><a name="data">Data (type 6)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td>Any</td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>1 byte flags:<pre>
bit 0: explicit ACKs included
bit 1: ACK bitfields included
bit 2: reserved
bit 3: explicit congestion notification
bit 4: request previous ACKs
bit 5: want reply
bit 6: extended data included
bit 7: reserved</pre></li>
<li>if explicit ACKs are included:<ul>
<li>a 1 byte number of ACKs</li>
<li>that many 4 byte MessageIds being fully ACKed</li>
</ul></li>
<li>if ACK bitfields are included:<ul>
<li>a 1 byte number of ACK bitfields</li>
<li>that many 4 byte MessageIds + a 1 or more byte ACK bitfield.
The bitfield uses the 7 low bits of each byte, with the high
bit specifying whether an additional bitfield byte follows it
(1 = true, 0 = the current bitfield byte is the last). These
sequence of 7 bit arrays represent whether a fragment has been
received - if a bit is 1, the fragment has been received. To
clarify, assuming fragments 0, 2, 5, and 9 have been received,
the bitfield bytes would be as follows:<pre>
byte 0
bit 0: 1 (further bitfield bytes follow)
bit 1: 1 (fragment 0 received)
bit 2: 0 (fragment 1 not received)
bit 3: 1 (fragment 2 received)
bit 4: 0 (fragment 3 not received)
bit 5: 0 (fragment 4 not received)
bit 6: 1 (fragment 5 received)
bit 7: 0 (fragment 6 not received)
byte 1
bit 0: 0 (no further bitfield bytes)
bit 1: 0 (fragment 7 not received)
bit 1: 0 (fragment 8 not received)
bit 1: 1 (fragment 9 received)
bit 1: 0 (fragment 10 not received)
bit 1: 0 (fragment 11 not received)
bit 1: 0 (fragment 12 not received)
bit 1: 0 (fragment 13 not received)</pre></li>
</ul></li>
<li>If extended data included:<ul>
<li>1 byte data size</li>
<li>that many bytes of extended data (currently uninterpreted)</li</ul></li>
<li>1 byte number of fragments</li>
<li>that many message fragments:<ul>
<li>4 byte messageId</li>
<li>3 byte fragment info:<pre>
bits 0-6: fragment #
bit 7: isLast (1 = true)
bits 8-9: unused
bits 10-23: fragment size</pre></li>
<li>that many bytes</li></ul>
<li>N bytes padding, uninterpreted</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>sessionKey</td></tr>
</table>
<pre>
+----+----+----+----+----+----+----+----+
|flag| (additional headers, determined |
+----+ |
| by the flags, such as ACKs or |
| bitfields |
+----+----+----+----+----+----+----+----+
|#frg| messageId | frag info |
+----+----+----+----+----+----+----+----+
| that many bytes of fragment data |
. . .
| |
+----+----+----+----+----+----+----+----+
| messageId | frag info | |
+----+----+----+----+----+----+----+ |
| that many bytes of fragment data |
. . .
| |
+----+----+----+----+----+----+----+----+
| messageId | frag info | |
+----+----+----+----+----+----+----+ |
| that many bytes of fragment data |
. . .
| |
+----+----+----+----+----+----+----+----+
| arbitrary amount of uninterpreted data|
+----+----+----+----+----+----+----+----+
</pre>
<h3><a name="peerTest">PeerTest (type 7)</a></h3>
<table border="1">
<tr><td align="right" valign="top"><b>Peer:</b></td>
<td><a href="#peerTesting">Any</a></td></tr>
<tr><td align="right" valign="top"><b>Data:</b></td>
<td><ul>
<li>4 byte nonce</li>
<li>1 byte IP address size</li>
<li>that many byte representation of Alice's IP address</li>
<li>2 byte port number</li>
<li>Alice's introduction key</li>
<li>N bytes, currently uninterpreted</li>
</ul></td></tr>
<tr><td align="right" valign="top"><b>Key used:</b></td>
<td>introKey (or sessionKey if the connection has already been established)</td></tr>
</table>
<pre>
+----+----+----+----+----+----+----+----+
| test nonce |size| that many |
+----+----+----+----+----+ |
|bytes making up Alice's IP address |
|----+----+----+----+----+----+----+----+
| Port (A)| Alice or Charlie's |
+----+----+ |
| introduction key (Alice's is sent to |
| Bob and Charlie, while Charlie's is | |
| sent to Alice) |
| +----+----+----+----+----+----+
| | arbitrary amount of |
|----+----+ |
| uninterpreted data |
+----+----+----+----+----+----+----+----+
</pre>
<h2><a name="congestioncontrol">Congestion control</a></h2>
<p>SSU's need for only semireliable delivery, TCP-friendly operation,
and the capacity for high throughput allows a great deal of latitude in
congestion control. The congestion control algorithm outlined below is
meant to be both efficient in bandwidth as well as simple to implement.</p>
<p>Packets are scheduled according to the the router's policy, taking care
not to exceed the router's outbound capacity or to exceed the measured
capacity of the remote peer. The measured capacity should operate along the
lines of TCP's slow start and congestion avoidance, with additive increases
to the sending capacity and multiplicative decreases in face of congestion.
Veering away from TCP, however, routers may give up on some messages after
a given period or number of retransmissions while continuing to transmit
other messages.</p>
<p>The congestion detection techniques vary from TCP as well, since each
message has its own unique and nonsequential identifier, and each message
has a limited size - at most, 32KB. To efficiently transmit this feedback
to the sender, the receiver periodically includes a list of fully ACKed
message identifiers and may also include bitfields for partially received
messages, where each bit represents the reception of a fragment. If
duplicate fragments arrive, the message should be ACKed again, or if the
message has still not been fully received, the bitfield should be
retransmitted with any new updates.</p>
<p>The simplest possible implementation does not need to pad the packets to
any particular size, but instead just places a single message fragment into
a packet and sends it off (careful not to exceed the MTU). A more efficient
strategy would be to bundle multiple message fragments into the same packet,
so long as it doesn't exceed the MTU, but this is not necessary. Eventually,
a set of fixed packet sizes may be appropriate to further hide the data
fragmentation to external adversaries, but the tunnel, garlic, and end to
end padding should be sufficient for most needs until then.</p>
<h2><a name="keys">Keys</a></h2>
<p>All encryption used is AES256/CBC with 32 byte keys and 16 byte IVs.
The MAC and session keys are negotiated as part of the DH exchange, used
for the HMAC and encryption, respectively. Prior to the DH exchange,
the publicly knowable introKey is used for the MAC and encryption.</p>
<p>When using the introKey, both the initial message and any subsequent
reply use the introKey of the responder (Bob) - the responder does
not need to know the introKey of the requestor (Alice). The DSA
signing key used by Bob should already be known to Alice when she
contacts him, though Alice's DSA key may not already be known by
Bob.</p>
<p>Upon receiving a message, the receiver checks the from IP address
with any established sessions - if there is one or more matches,
those session's MAC keys are tested sequentially in the HMAC. If none
of those verify or if there are no matching IP addresses, the
receiver tries their introKey in the MAC. If that does not verify,
the packet is dropped. If it does verify, it is interpreted
according to the message type, though if the receiver is overloaded,
it may be dropped anyway.</p>
<p>If Alice and Bob have an established session, but Alice loses the
keys for some reason and she wants to contact Bob, she may at any
time simply establish a new session through the SessionRequest and
related messages. If Bob has lost the key but Alice does not know
that, she will first attempt to prod him to reply, by sending a
DataMessage with the wantReply flag set, and if Bob continually
fails to reply, she will assume the key is lost and reestablish a
new one.</p>
<p>For the DH key agreement,
<a href="http://www.faqs.org/rfcs/rfc3526.html">RFC3526</a> 2048bit
MODP group (#14) is used:</p>
<pre>
p = 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }
g = 2
</pre>
<p>The DSA p, q, and g are shared according to the scope of the
identity which created them.</p>
<h2><a name="replay">Replay prevention</a></h2>
<p>Replay prevention at the SSU layer occurs by rejecting packets
with exceedingly old timestamps or those which reuse an IV. To
detect duplicate IVs, a sequence of Bloom filters are employed to
"decay" periodically so that only recently added IVs are detected.</p>
<p>The messageIds used in DataMessages are defined at layers above
the SSU transport and are passed through transparently. These IDs
are not in any particular order - in fact, they are likely to be
entirely random. The SSU layer makes no attempt at messageId
replay prevention - higher layers should take that into account.</p>
<h2><a name="introduction">Introduction</a></h2>
<p>Indirect session establishment by means of a third party introduction
is necessary for efficient NAT traversal. Charlie, a router behind a
NAT or firewall which does not allow unsolicited inbound UDP packets,
first contacts a few peers, choosing some to serve as introducers. Each
of these peers (Bob, Bill, Betty, etc) provide Charlie with an introduction
tag - a 4 byte random number - which he then makes available to the public
as methods of contacting him. Alice, a router who has Charlie's published
contact methods, first sends a RelayRequest packet to one or more of the
introducers, asking each to introduce her to Charlie (offering the
introduction tag to identify Charlie). Bob then forwards a RelayIntro
packet to Charlie including Alice's public IP and port number, then sends
Alice back a RelayResponse packet containing Charlie's public IP and port
number. When Charlie receives the RelayIntro packet, he sends off a small
random packet to Alice's IP and port (poking a hole in his NAT/firewall),
and when Alice receive's Bob's RelayResponse packet, she begins a new
full direction session establishment with the specified IP and port.</p>
<!--
should Bob wait for Charlie to ack the RelayIntro packet to avoid
situations where that packet is lost yet Alice gets Charlie's IP with
Charlie not yet punching a hole in his NAT for her to get through?
Perhaps Alice should send to multiple Bobs at once, hoping that at
least one of them gets through
-->
<h2><a name="peerTesting">Peer testing</a></h2>
<p>The automation of collaborative reachability testing for peers is
enabled by a sequence of PeerTest messages. With its proper
execution, a peer will be able to determine their own reachability
and may update its behavior accordingly. The testing process is
quite simple:</p>
<pre>
Alice Bob Charlie
PeerTest -------------------&gt;
PeerTest--------------------&gt;
&lt;-------------------PeerTest
&lt;-------------------PeerTest
&lt;------------------------------------------PeerTest
PeerTest------------------------------------------&gt;
&lt;------------------------------------------PeerTest
</pre>
<p>Each of the PeerTest messages carry a nonce identifying the
test series itself, as initialized by Alice. If Alice doesn't
get a particular message that she expects, she will retransmit
accordingly, and based upon the data received or the messages
missing, she will know her reachability. The various end states
that may be reached are as follows:</p>
<ul>
<li>If she doesn't receive a response from Bob, she will retransmit
up to a certain number of times, but if no response ever arrives,
she will know that her firewall or NAT is somehow misconfigured,
rejecting all inbound UDP packets even in direct response to an
outbound packet. Alternately, Bob may be down or unable to get
Charlie to reply.</li>
<li>If Alice doesn't receive a PeerTest message with the
expected nonce from a third party (Charlie), she will retransmit
her initial request to Bob up to a certain number of times, even
if she has received Bob's reply already. If Charlie's first message
still doesn't get through but Bob's does, she knows that she is
behind a NAT or firewall that is rejecting unsolicited connection
attempts and that port forwarding is not operating properly (the
IP and port that Bob offered up should be forwarded).</li>
<li>If Alice receives Bob's PeerTest message and both of Charlie's
PeerTest messages but the enclosed IP and port numbers in Bob's
and Charlie's second messages don't match, she knows that she is
behind a symmetric NAT, rewriting all of her outbound packets with
different 'from' ports for each peer contacted. She will need to
explicitly forward a port and always have that port exposed for
remote connectivity, ignoring further port discovery.</li>
<li>If Alice receives Charlie's first message but not his second,
she will retransmit her PeerTest message to Charlie up to a
certain number of times, but if no response is received she knows
that Charlie is either confused or no longer online.</li>
</ul>
<p>Alice should choose Bob arbitrarily from known peers who seem
to be capable of participating in peer tests. Bob in turn should
choose Charlie arbitrarily from peers that he knows who seem to be
capable of participating in peer tests and who are on a different
IP from both Bob and Alice. If the first error condition occurs
(Alice doesn't get PeerTest messages from Bob), Alice may decide
to designate a new peer as Bob and try again with a different nonce.</p>
<p>Alice's introduction key is included in all of the PeerTest
messages so that she doesn't need to already have an established
session with Bob and so that Charlie can contact her without knowing
any additional information. Alice may go on to establish a session
with either Bob or Charlie, but it is not required.</p>
<h2><a name="messageSequences">Message sequences</a></h2>
<h3><a name="establishDirect">Connection establishment (direct)</a></h3>
<pre>
Alice Bob
SessionRequest---------------------&gt;
&lt;---------------------SessionCreated
SessionConfirmed-------------------&gt;
SessionConfirmed-------------------&gt;
SessionConfirmed-------------------&gt;
SessionConfirmed-------------------&gt;
&lt;--------------------------Data
</pre>
<h3><a name="establishIndirect">Connection establishment (indirect)</a></h3>
<pre>
Alice Bob Charlie
RelayRequest ----------------------&gt;
&lt;--------------RelayResponse RelayIntro-----------&gt;
&lt;--------------------------------------------Data (ignored)
SessionRequest--------------------------------------------&gt;
&lt;--------------------------------------------SessionCreated
SessionConfirmed------------------------------------------&gt;
SessionConfirmed------------------------------------------&gt;
SessionConfirmed------------------------------------------&gt;
SessionConfirmed------------------------------------------&gt;
&lt;---------------------------------------------------Data
</pre>
<h2><a name="sampleDatagrams">Sample datagrams</a></h2>
<b>Minimal data message (no fragments, no ACKs, no NACKs, etc)</b><br />
<i>(Size: 39 bytes)</i>
<pre>
+----+----+----+----+----+----+----+----+
| MAC |
| |
+----+----+----+----+----+----+----+----+
| IV |
| |
+----+----+----+----+----+----+----+----+
|flag| time |flag|#frg| |
+----+----+----+----+----+----+----+ |
| padding to fit a full AES256 block |
+----+----+----+----+----+----+----+----+
</pre>
<b>Minimal data message with payload</b><br />
<i>(Size: 46+fragmentSize bytes)</i>
<pre>
+----+----+----+----+----+----+----+----+
| MAC |
| |
+----+----+----+----+----+----+----+----+
| IV |
| |
+----+----+----+----+----+----+----+----+
|flag| time |flag|#frg|
+----+----+----+----+----+----+----+----+
messageId | frag info | |
+----+----+----+----+----+----+ |
| that many bytes of fragment data |
. . .
| |
+----+----+----+----+----+----+----+----+
</pre>
<h2><a name="capabilities">Peer capabilities</a></h2>
<dl>
<dt>B</dt>
<dd>If the peer address contains the 'B' capability, that means
they are willing and able to participate in peer tests as
a 'Bob' or 'Charlie'.</dd>
<dt>C</dt>
<dd>If the peer address contains the 'C' capability, that means
they are willing and able to serve as an introducer - serving
as a Bob for an otherwise unreachable Alice.</dd>
</dl>